Cytostatic and cytotoxic effects of alkylglycerols (Ecomer)

Marcin Krotkiewski1, Małgorzata Przybyszewska2, Przemysław Janik2

1 The Sahlgrenska Academy at Göteborg University, Gothenburg Institute of Clinical Neuroscience, Göteborg, Sweden
2 Cell Biology Department, Cancer Center, Warsaw, Poland

Summary

Background: Shark liver oil, with a standardized concentration of alkylglycerols and their methoxy-derivatives, has been widely used in Scandinavian countries as complementary medicine in the treatment of different forms of cancer. The aim of our study was to verify the hypothesized antiproliferative effect of alkylglycerols in different human cancer cell lines.

Material/Methods: The plating efficiency method was used to assay the effect of alkylglycerols on the plating efficiency of human ovarian carcinoma (OVP-10), mammary carcinoma (MCF-7), and prostate cancer (DU-145, PC-3 and PCa-2b) cell lines. Tumor colonies containing more than 20 cells were scored as positive. Flow cytometry was applied to identify necrotic vs. apoptotic mode of cell death. The cells were exposed to Ecomer® shark liver oil containing 20% alkylglycerols and 3% methoxyderivates in a dose of 0.1 mg/ml, up to a concentration corresponding to LD-50. Apoptotic and necrotic cells were stained with Anexin V and propidium iodine respectively.

Results: The prostate cells from DU-145, PC-3 and PCa-2B showed a dramatic reduction in the colony number even after relatively small doses of 0.5 and 0.1 mg/ml medium. Flow cytometry showed an increased percentage of apoptotic cells of ovarian and prostate carcinoma, while mammary carcinoma cells showed predominantly necrotic cells after exposure to Ecomer.

Conclusions: The alkylglycerols and their methoxyderivates present in Ecomer® shark liver oil showed a clear apoptotic/necrotic effect on human prostate and mammary carcinoma cell lines.

Keywords: alkylglycerols • methoxyalkylglycerols • prostate cell lines • ovary cell lines • mammary cell lines

Received: 2003.07.01
Accepted: 2003.09.18
Published: 2003.11.03

Author’s address: Marcin Krotkiewski, MD, PhD, Lövmossevägen 1, SE - 436 39 Askim 39 Askim, Sweden, email: krotkiewski@nestenborg.net
BACKGROUND

Shark liver oil is an ancient remedy among the fishermen who live along the west coast of Norway and Sweden. In addition to its use for the treatment of general debility, it has historically had several specific applications, such as wound healing and the treatment of irritation of the respiratory and alimentary tracts. Of particular interest, this oil was also used in the past to treat what was referred to in those days as 'glandular disease', and nowadays would be called lymphadenopathy. It was not until the early part of this century that biochemists discovered substances in this oil that may account for its traditional uses: namely, the alkylglycerols.

Alkylglycerols are glyceryl ether lipids that are structurally characterized by an ether linkage of a fatty acid attached to the chain length and by the number of double bonds; several derivatives of the ether lipid have been identified. The principal alkylglycerols include chimyl (hexadecyl), batyl (octadecyl), and selachyl (octadecenyl) alcohols [1]. A small quantity of alkylglycerols is found in human colostrum, human milk, and sheep’s milk. Human milk has been found to contain nearly 10 times more alkylglycerols than cow’s milk [4].

The biological effects of alkylglycerol have been demonstrated in both animals and human patients with cancers. The administration of alkylglycerol to animals stimulates hematopoiesis, including erythropoiesis, thrombopoiesis, and granulopoiesis [5–7]. In one study, treatment with shark liver oil alkylglycerols in uterine cervical cancer patients who were receiving radiation therapy significantly reduced the injuries accompanying radiation toxicity, and resulted in enhanced survival rate and survival time [8]. A number of observations have reported that alkylglycerols and alkyl lysophospholipids significantly activate cytotoxic macrophages, leading to enhanced Fc-receptor-mediated phagocytosis [9], increase humoral immune response, and delay hypersensitivity reaction [10]. Other studies have shown that alkylglycerolcs inhibit the growth of primary tumors and sensitivity reaction [10]. Other studies have shown that alkylglycerols inhibit the growth of primary tumors and sensitivity reaction [10]. Other studies have shown that alkylglycerols inhibit the growth of primary tumors and sensitivity reaction [10]. Other studies have shown that alkylglycerols inhibit the growth of primary tumors and sensitivity reaction [10]. Other studies have shown that alkylglycerolcs inhibit the growth of primary tumors and sensitivity reaction [10]. Other studies have shown that alkylglycerolcs inhibit the growth of primary tumors and sensitivity reaction [10]. Other studies have shown that alkylglycerolcs inhibit the growth of primary tumors and sensitivity reaction [10]. Other studies have shown that alkylglycerolcs inhibit the growth of primary tumors and sensitivity reaction [10]. Other studies have shown that alkylglycerolcs inhibit the growth of primary tumors and sensitivity reaction [10].

The aim of our study was to examine the antiproliferative effect of Ecomer in different human cancer cell lines.

MATERIAL AND METHODS

Five human tumor cell lines were used:
- ovarian carcinoma: OVP-10;
- mammary carcinoma: MCF-7;
- three different prostate cancer cell lines: DU-145, PC-3, and PCa-2b, which are hormone-independent.

All tumor cell lines were routinely propagated in Minimal Essential Medium (MEM) supplemented with 7% fetal calf serum (FCS) and antibiotics.

The sensitivity of tumor cells to Ecomer was tested for plating efficiency, using a method which can be described briefly as follows: 100 cells in 5 ml of FCS-supplemented medium (MEM) were plated on 3 cm diameter Petri dishes. After 24 hours the medium was replaced with a medium containing Ecomer. The cultures were kept for six days and the cells were then fixed with methanol and stained with Giemsa. Tumor colonies containing more than 20 cells were scored as positive.

The method of scoring tumor colonies following any kind of treatment provides information about the fraction that has survived cytotoxic treatment. Determination of the size of the tumor colony when cytotoxic effects are excluded can show whether the cytostatic effect is involved, as indicated by the reduction in the cancer cell colonies size (results not shown). Flow cytometry was applied to differentiate the necrotic or apoptotic mode of cell death. Ecomer (Natumin Pharma AB, Sandefjord, Norway) shark liver oil containing 20% alkylglycerol and 3% methoxy-derivates was kindly supplied by the producer. The cells studied were exposed to Ecomer for 24 h. The Ecomer dose was an LD50 dose selected on the basis of previous experiments. After the 24 h treatment, cells from the cultures were trypsinized to obtain a single-cell suspension and then stained with Anexin V and propidium iodine (Apoptosis detection kit, Caltag Laboratories) for 20 min in dark-
The observed anti-proliferative effect of Ecomer could be either cytostatic or cytotoxic. In the case of the ovarian carcinoma cell line (OVP-10), the Ecomer-treated cells developed smaller colonies and displayed a higher percentage of apoptotic cells. Non-stained cells are alive. For simplification, early and late apoptotic cells were regarded as a single group, i.e. apoptotic cells.

Table 1. Effect of Ecomer treatment on the plating efficiency of tumor cell lines.

<table>
<thead>
<tr>
<th></th>
<th>OVP-10</th>
<th>MCF-7</th>
<th>DU–145</th>
<th>PC–3</th>
<th>PCA–2b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>38.5±9.8</td>
<td>36.5±16.5</td>
<td>11.8±7.3</td>
<td>46.6±11.7</td>
<td>40.2±9.8</td>
</tr>
<tr>
<td>Ecomer 1.0 mg</td>
<td>31.8±8.7</td>
<td>0</td>
<td>8.2±3.5</td>
<td>0</td>
<td>4.6±1.2</td>
</tr>
<tr>
<td>Ecomer 0.5 mg</td>
<td>36.4±6.7</td>
<td>n=12</td>
<td>24.1±9.2</td>
<td>n=12</td>
<td>n=6</td>
</tr>
<tr>
<td>Ecomer 0.1 mg</td>
<td>n.d.</td>
<td>n.d.</td>
<td>28.6±10.5</td>
<td>n=12</td>
<td>n=6</td>
</tr>
<tr>
<td>Ecomer 0.05 mg</td>
<td>n.d.</td>
<td>n.d.</td>
<td>12.2±6.1</td>
<td>n=10</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Mean ±SD; n – number of repetitions; nd – non-determined

DISCUSSION

Ecomer® a commercially available shark liver oil, proved to inhibit proliferation in four out of five tumor cell lines. Among the cell lines studied, the ovarian carcinoma cells (OVP-10) were found to be the least sensitive, mammary carcinoma cells (MCF-7) displayed a moderate sensitivity, whereas all three lines of prostate cancer cells showed a high sensitivity to Ecomer. These findings confirm previously described characteristics of alkyl-ether lipids, in particular their selective effects in inhibiting the proliferation of neoplastic cells, with practically no effects on normal cells [19]. The cytostatic and cytotoxic effects of synthetic ether lipids on a wide range of cancer cells and experimental tumors are well documented, and a number of these compounds have been already registered or are undergoing clinical trials [20–23]. Both synthetic ether lipids and natural alkylglycerols have been found to cause growth inhibition of cancer cells without interacting with cellular DNA. Their effects have been ascribed to a wide range of mechanisms, including inhibition of phosphatidylcholine synthesis [21,24], interruption of mitochondrial pathways [25,26], and nutrient starvation [27], all of which are known to induce apoptosis [25,28].

The results of the flow cytometry experiments are shown in Table 2.

Table 2. Determination by flow cytometry of the percentage of necrotic and apoptotic cells following treatment with an LD 50 dose of Ecomer.

<table>
<thead>
<tr>
<th></th>
<th>Live cells (%)</th>
<th>Necrotic cells</th>
<th>Apoptotic cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>OVP-10</td>
<td>79.9±6.5</td>
<td>7.1±5.6</td>
<td>13.0±5.3</td>
</tr>
<tr>
<td>Control</td>
<td>n=4</td>
<td>n=4</td>
<td>n=4</td>
</tr>
<tr>
<td>OVP-10</td>
<td>62.3±14.0</td>
<td>12.8±7.6</td>
<td>24.9±12.2</td>
</tr>
<tr>
<td>Ecomer</td>
<td>n=4</td>
<td>n=4</td>
<td>n=4</td>
</tr>
<tr>
<td>MCF-7</td>
<td>85.2±11.0</td>
<td>7.9±7.3</td>
<td>7.0±4.3</td>
</tr>
<tr>
<td>Control</td>
<td>n=4</td>
<td>n=4</td>
<td>n=4</td>
</tr>
<tr>
<td>MCF-7</td>
<td>71.8±4.2</td>
<td>20.8±6.4</td>
<td>7.4±3.9</td>
</tr>
<tr>
<td>Ecomer</td>
<td>n=4</td>
<td>n=4</td>
<td>n=4</td>
</tr>
<tr>
<td>DU–145</td>
<td>87.7±2.3</td>
<td>1.1±0.3</td>
<td>11.1±2.0</td>
</tr>
<tr>
<td>Control</td>
<td>n=4</td>
<td>n=4</td>
<td>n=4</td>
</tr>
<tr>
<td>DU–145</td>
<td>79.0±1.2</td>
<td>3.0±2.1</td>
<td>18.0±1.4</td>
</tr>
<tr>
<td>Ecomer</td>
<td>n=4</td>
<td>n=4</td>
<td>n=4</td>
</tr>
</tbody>
</table>

Mean ±SD; n – number of repetitions

ness. Following the staining, about 400,000 cells were subjected to cytometry using a FACS VANTAGE device (Becton-Dickinson). The detection of necrotic or apoptotic cells by means of the staining here described is based on the assumption that cells stained with Anexin V represent the population of early apoptotic cells. The necrotic cells are stained with propidium iodite. Cells stained with Anexin and propidium iodite represent the population of late apoptotic cells. Non-stained cells are alive. For simplification, early and late apoptotic cells were regarded as a single group, i.e. apoptotic cells.

RESULTS

The results of the plating efficiency study revealed that Ecomer, even at a dose of 1 mg/ml, did not reduce the number of ovarian carcinoma cells in the colony. The Ecomer-treated colonies were found to be smaller than those that developed from non-treated cells (mean 154.0, SD±94.0 vs. mean 99.0, SD±52.3 um² respectively). MCF-7 cells displayed some sensitivity. Conversely, the DU-145, PC-3 and PCA-2b prostate cells showed a dramatic reduction in the colony number, even after doses of 0.5 and 0.1 mg Ecomer per 1 ml medium. The results are presented in Table 1. The flow cytometry study showed an increased percentage of apoptotic cells in ovarian carcinoma and prostate carcinoma after exposure to Ecomer. Mammary carcinoma cells exposed to Ecomer died predominantly by necrosis. The results of the flow cytometry experiments are shown in Table 2.
moral effects of methoxyderivates. Recently Wang et al. demonstrated the differentiation-promoting effect of methoxyalkylglycerol (2 methoxyhexadecyl glycerol MHG) in human colon cancer cells [32].

Already in the early 1970s Ando et al. [33] revealed that methoxyhexadecyl glycerol had a clear inhibitory effect on melanoma B16, Lewis lung tumor, MCA sarcoma MCG101, and lymphomas LEX and P1534. More recently it has been demonstrated that naturally occurring methoxy-derivatives of alkylglycerols inhibit cellular proliferation and restrain independent growth and cellular growth in the human prostate cancer Uncap and DU-145 [32]. These observations may indicate that methoxy-derivates rather promote differentiation of different cancer cells, not directly influencing cancer cell death. It would be possible to speculate, on other hand, about a possible synergistic action of alkylglycerols with their methoxyderivates and squalein with respect to general antitumor activity, the alkylglycerols being presumably responsible for the observed apoptosis and/or necrosis of cancer cells. Assuming a similarity between the action of naturally-occurring and synthetic ether lipids, and taking into account the early observations that both are incorporated mainly in the cancer cell membrane, it seems likely that the cytotoxicity of Ecomer may result from oxidative stress involving iron-induced lipid peroxidation, as proposed by Wagner et al. [34]. The generation of lipid oxyradicals under the effect of ether lipids is a rapid process that takes place in a few minutes, in contrast to cytotoxicity, which – as observed in our experiment – is a delayed, long-term process. This long time lag could be the result of a series of intermediate steps, such as propagation of peroxidation or overcoming antioxidative defense systems, such as cystein-dependent, intracellular, anti-oxidative pathways stimulated by Bcl-2. On the other hand, Verdonck [28] reported that ether lipids could kill acute leukemic blasts by inducing apoptosis, which occurred within 15 min. Likewise, Mollinedo reported apoptotic death for leukemic cells induced by ether lipids after only 6 min. of incubation [23]. Interestingly, the same group (Mollinedo F et al.) showed that the varying content of unsaturated lipids in cell membrane may determine the degree of generation of lipid peroxides. The membrane-dependent effects of ether lipids, and particularly the alkylglycerols, caused disturbances in membrane fluidity and permeabilization of neoplastic cell membranes [23]. These membrane effects were also shown to be responsible for the alkylglycerol-dependent activation of macrophages and subsequent phagocytosis [35].

Further evidence has come from the observation reported by Wagner, that prior enrichment of cells with polyunsaturated fatty acids promoted apoptosis and enhanced generation of free radicals, while cancer cells with a low content of polyunsaturated fatty acids in their membranes were oxidatively silent and resistant to the effect of ether lipids [34]. The same group explained the sensitivity of HL-60 cells and the resistance of the other leukemia cell line, K-562, by the observation that K-562 was found to be oxidatively silent. Thus the difference in oxidative susceptibility may explain the observed differences in the percentage of cell death observed in our experiment in the different human cancer cell lines. One of the mechanisms inducing the higher generation of free radicals described in connection with ether lipids is their influence on two protooncogenes, c-fas and c-jun, encoding two components of transcription factor AP-1 [36]. AP-1 is known to induce increased production of proinflammatory cytokines and production of free radicals. The increased activation of AP-1 can possibly explain both the induction of apoptosis, by increasing the free radical-dependent oxidative stress, and also the enhancement of the tumoricidal activity of macrophages associated with alkylglycerols [36].

A possible mechanism explaining the differences we found in the effects of alkylglycerols on different cell lines may depend on the differences in the affinity of alkylglycerols to the cell membrane of different neoplastic cells, as evidenced by varying content of alkylglycerols in 17 different human tumors [3]. The same group explained the significantly higher content of alkylglycerols in neoplastic cells in comparison with normal cells by the absence of an alkyl ether-cleaving enzyme (etherase) that is found in liver and other healthy cells [37].

Although a clear concept of the molecular target for alkylglycerols and ether lipids has yet to emerge from these diverse findings, it is possible that there is no single mode of action, but rather a series of critical events which can act in concert to induce apoptosis and to inhibit tumor cell growth. It is also possible that this complex mode of action depends on the presence of three different components in shark liver oil: alkylglycerols, metoxyderivates of glycerols and squalein.

CONCLUSIONS

The results of the present study show a clear apoptosis/necrosis-inducing effect of shark liver oil (Ecomer®) in three different cell lines of human prostate cancer, and in human mammary carcinoma cells line. This effect seems to be specific for particular cancer lines, as no such effect was observed the human ovarian carcinoma cells. Further studies are needed to elucidate possible therapeutic application of the alkylglycerols present in the shark liver oil of Ecomer.

REFERENCES:

Index Copernicus
Global Scientific Information Systems for Scientists by Scientists

www.IndexCopernicus.com

Index Copernicus integrates

IC Scientists
Effective search tool for collaborators worldwide. Provides easy global networking for scientists. C.V.’s and dossiers on selected scientists available. Increase your professional visibility.

IC Journal Master List
Scientific literature database, including abstracts, full text, and journal ranking. Instructions for authors available from selected journals.

IC Virtual Research Groups [VRG]
Web-based complete research environment which enables researchers to work on one project from distant locations. VRG provides:
- customizable and individually self-tailored electronic research protocols and data capture tools,
- statistical analysis and report creation tools,
- profiled information on literature, publications, grants and patents related to the research project,
- administration tools.

IC Patents
Provides information on patent registration process, patent offices and other legal issues. Provides links to companies that may want to license or purchase a patent.

IC Grants Awareness
Need grant assistance? Step-by-step information on how to apply for a grant. Provides a list of grant institutions and their requirements.

IC Conferences
Effective search tool for worldwide medical conferences and local meetings.

IC Lab & Clinical Trial Register
Provides list of on-going laboratory or clinical trials, including research summaries and calls for co-investigators.